
Previous Article
A piecewise affine contracting map with positive entropy
 DCDS Home
 This Issue

Next Article
Insecure configurations in lattice translation surfaces, with applications to polygonal billiards
Every ergodic measure is uniquely maximizing
1.  School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS 
[1] 
Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems, 2006, 15 (1) : 197224. doi: 10.3934/dcds.2006.15.197 
[2] 
Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems, 2015, 35 (8) : 33153326. doi: 10.3934/dcds.2015.35.3315 
[3] 
Liyuan Wang, Zhiping Chen, Peng Yang. Robust equilibrium controlmeasure policy for a DC pension plan with statedependent risk aversion under meanvariance criterion. Journal of Industrial & Management Optimization, 2021, 17 (3) : 12031233. doi: 10.3934/jimo.2020018 
[4] 
Ian D. Morris. Ergodic optimization for generic continuous functions. Discrete & Continuous Dynamical Systems, 2010, 27 (1) : 383388. doi: 10.3934/dcds.2010.27.383 
[5] 
Yunmei Chen, Jiangli Shi, Murali Rao, JinSeop Lee. Deformable multimodal image registration by maximizing Rényi's statistical dependence measure. Inverse Problems & Imaging, 2015, 9 (1) : 79103. doi: 10.3934/ipi.2015.9.79 
[6] 
Jon Chaika, Howard Masur. There exists an interval exchange with a nonergodic generic measure. Journal of Modern Dynamics, 2015, 9: 289304. doi: 10.3934/jmd.2015.9.289 
[7] 
Jialu Fang, Yongluo Cao, Yun Zhao. Measure theoretic pressure and dimension formula for nonergodic measures. Discrete & Continuous Dynamical Systems, 2020, 40 (5) : 27672789. doi: 10.3934/dcds.2020149 
[8] 
Nuno Luzia. On the uniqueness of an ergodic measure of full dimension for nonconformal repellers. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 57635780. doi: 10.3934/dcds.2017250 
[9] 
Tomasz Downarowicz, Benjamin Weiss. Pure strictly uniform models of nonergodic measure automorphisms. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021140 
[10] 
Yufei Sun, Grace Aw, Kok Lay Teo, Guanglu Zhou. Portfolio optimization using a new probabilistic risk measure. Journal of Industrial & Management Optimization, 2015, 11 (4) : 12751283. doi: 10.3934/jimo.2015.11.1275 
[11] 
Zhiyuan Wen, Meirong Zhang. On the optimization problems of the principal eigenvalues of measure differential equations with indefinite measures. Discrete & Continuous Dynamical Systems  B, 2020, 25 (8) : 32573274. doi: 10.3934/dcdsb.2020061 
[12] 
Xi Chen, Zongrun Wang, Songhai Deng, Yong Fang. Risk measure optimization: Perceived risk and overconfidence of structured product investors. Journal of Industrial & Management Optimization, 2019, 15 (3) : 14731492. doi: 10.3934/jimo.2018105 
[13] 
Jianxin Zhou. Optimization with some uncontrollable variables: a minequilibrium approach. Journal of Industrial & Management Optimization, 2007, 3 (1) : 129138. doi: 10.3934/jimo.2007.3.129 
[14] 
Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial & Management Optimization, 2017, 13 (1) : 8192. doi: 10.3934/jimo.2016005 
[15] 
Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 32373276. doi: 10.3934/dcds.2013.33.3237 
[16] 
Benedetto Piccoli. Optimal syntheses for state constrained problems with application to optimization of cancer therapies. Mathematical Control & Related Fields, 2012, 2 (4) : 383398. doi: 10.3934/mcrf.2012.2.383 
[17] 
Eduardo Casas, Fredi Tröltzsch. Stateconstrained semilinear elliptic optimization problems with unrestricted sparse controls. Mathematical Control & Related Fields, 2020, 10 (3) : 527546. doi: 10.3934/mcrf.2020009 
[18] 
Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Global stabilization of the NavierStokes equations around an unstable equilibrium state with a boundary feedback controller. Evolution Equations & Control Theory, 2015, 4 (1) : 89106. doi: 10.3934/eect.2015.4.89 
[19] 
Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassywinged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 11671174. doi: 10.3934/mbe.2014.11.1167 
[20] 
Lin Xu, Rongming Wang, Dingjun Yao. On maximizing the expected terminal utility by investment and reinsurance. Journal of Industrial & Management Optimization, 2008, 4 (4) : 801815. doi: 10.3934/jimo.2008.4.801 
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]